Differentiate y = (x^2 + 1)^1/3

Use the chain rule to do this. First set u= x^2 + 1. We chose u to be this because u1/3 is much simpler to differentiate. Then find du/dx = 2x. Now find dy/du = 1/3 * u-2/3 = 1/3 * (x2 +1)-2/3. Now by the chain rule, dy/dx = dy/du * du/dx. Therefore dy/ dx = 2x * (1/3 * (x2 +1)-2/3 )= 2x/3 * (x2+1)-2/3

WW
Answered by Will W. Maths tutor

3530 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate by parts?


Find the turning points of the curve (x^3)/3 + x^2 -8x + 5


How do I find the minimum point for the equation y = x^2 -5x - 6?


What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning