Find the integral of (cosx)*(sinx)^2 with respect to x

This is a common example of an integral that is a product of two functions whose derivatives are related. As we know the derivative of sinx is cosx, we can use substitution to easily solve this - let our U= sinx, and dU/dx = cosx so dU = cosxdx. Input the substitution to give the integral of U2dU, which by the power rule is simply solved as U3/3, without forgetting the constant C. Substituting U we find that the final answer is (sin3x)/3 + C

HS
Answered by Harry S. Maths tutor

6205 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx of the curve x^3+5xy-2y^2-57=0


Find the equation of the line perpendicular to the line y= 3x + 5 that passes through the point (-1,4)


Integral of (2(x^3)-7)/((x^4)-14x)


Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences