How do I solve simultaneous equations?

The elimination method
2x + 3y = 83x + 2y = 7
First we multiply one or both of the equations so that one of their like terms share the same coefficients.
2x + 3y = 8 (multiply by 3) -> 6x + 9y = 243x + 2y = 7 (multiply by 2) -> 6x + 4y = 14
Now we can subtract the bottom equation from the top
5y = 10y=2
we then input this value into a previous formula2x + 3y = 82x = 8 - 3(2)2x = 2
x = 1
Alternatively
For questions where the elimination method does not leave one variable, such as:
x2 + y2 = 25y - 3x = 13
You should rearrange one of the equations in terms of one of its variables and then apply functions to it, such that it looks similar to the same term in the other equation.
y = 13 + 3x -> y2 = 9x2 + 78x + 169
Then you should substitute this equation into the other.
x2 + (9x2 + 78x + 169) = 25
Then simplify, and use the value found to find any other values, by inputting it into the original equations.
10x2 + 78x + 144 = 0 --> 5x2 + 39x + 72 = 0(5x + )(x + ) = 0 --> (5x + 24)(x + 3) = 05x + 24 = 0 x + 3 = 0x = -24/5 = -4.8 x = -3y = 13 +3x = 13 + 3(-3) = 13 - 9 = 4
y = 13 + 3x = 13 + 3(-24/5) = 65/5 - 72/5 = -7/5
x = -4.8, -3 y = 4, -7.5

JG
Answered by Joe G. Maths tutor

3805 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Show the curve y = 4x^2 + 5x + 3 and the line y = x + 2 have exactly one point of intersection


In a right-angled triangle calculate the length of the hypotenuse when the side lengths at 5cm and 7cm. Leave your answer as a surd.


What are the trigonometric functions?


What is the best way to study for a Maths exam?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning