How do I solve simultaneous equations?

The elimination method
2x + 3y = 83x + 2y = 7
First we multiply one or both of the equations so that one of their like terms share the same coefficients.
2x + 3y = 8 (multiply by 3) -> 6x + 9y = 243x + 2y = 7 (multiply by 2) -> 6x + 4y = 14
Now we can subtract the bottom equation from the top
5y = 10y=2
we then input this value into a previous formula2x + 3y = 82x = 8 - 3(2)2x = 2
x = 1
Alternatively
For questions where the elimination method does not leave one variable, such as:
x2 + y2 = 25y - 3x = 13
You should rearrange one of the equations in terms of one of its variables and then apply functions to it, such that it looks similar to the same term in the other equation.
y = 13 + 3x -> y2 = 9x2 + 78x + 169
Then you should substitute this equation into the other.
x2 + (9x2 + 78x + 169) = 25
Then simplify, and use the value found to find any other values, by inputting it into the original equations.
10x2 + 78x + 144 = 0 --> 5x2 + 39x + 72 = 0(5x + )(x + ) = 0 --> (5x + 24)(x + 3) = 05x + 24 = 0 x + 3 = 0x = -24/5 = -4.8 x = -3y = 13 +3x = 13 + 3(-3) = 13 - 9 = 4
y = 13 + 3x = 13 + 3(-24/5) = 65/5 - 72/5 = -7/5
x = -4.8, -3 y = 4, -7.5

JG
Answered by Joe G. Maths tutor

3392 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A washing machine costs £500 in a sale and was reduced by 20%. What was its original price?


Factorise the quadratic equation: x^2 + 5x + 6 = 0 and hence find the two solutions to the equation.


Solve the simultaneous equation. 2x + y = 7 and 3x - y = 8


How do you calculate ratios? Example question: 'White paint costs £2.80 per litre, Blue paint costs £3.50 per litre, White paint and blue paint are mixed in the ratio 3:2. Work out the cost of 18 litres of the mixture [4 marks]' AQA Mathematics (8300)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences