Solve the simultaneous equations: 2x+5y=25, x=y+2

using our second equation, we can see that x=y+2. Therefore we can sub x into the first equation. This will give us 2*(y+2)+5y=25. We can go ahead and expand the brackets, which gives us 2y+4+5y=25. We can combine the y terms which gives 7y+4=25. We can take 4 away from both sides with gives 7y=21, and divide both sides by 7 so y=3. We can sub 3 into y in the original equation, to give that x=5.

LW
Answered by Louis W. Maths tutor

3675 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

2x + 7y = 14 and x + y = 2. Find the value of x and y which satisfy both equations.


How do I know which sides are the Adjacent, Opposite and Hypotenuse for trigonometry?


rearrange c=(4-d)/(d+3)


Solve the simultaneous equations to find the values of x and y: 3x + 5y = -4 and 10x - 4y = -34


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning