Solve the simultaneous equations: 2x+5y=25, x=y+2

using our second equation, we can see that x=y+2. Therefore we can sub x into the first equation. This will give us 2*(y+2)+5y=25. We can go ahead and expand the brackets, which gives us 2y+4+5y=25. We can combine the y terms which gives 7y+4=25. We can take 4 away from both sides with gives 7y=21, and divide both sides by 7 so y=3. We can sub 3 into y in the original equation, to give that x=5.

LW
Answered by Louis W. Maths tutor

3854 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A t-shirt is in the sale section of a store. It has 20% off and the new sale price is £12. What was the original price of the t-shirt?


Maths A Level: "Sketch the curve of the function f(x) = 2x^3 - 2x - 12 and show that the equation f(x)=0 has one root; calculate the root."


Expand and simplify 5(x+4)-3(2+3x)


Factorise and solve x^2 - 8x + 15 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning