How can I prove that an angle in a semi-circle is always 90 degrees?

If we take the diameter of a circle and create an angle on the circumference at point C of the circle from the two points where the diameter meets the circumference (points A and B), the angle created will always equal 90 degrees. To prove this we can draw a line from point C to the centre (point O). We have now created two isosceles triangles (O,A,C) and (O,B,C). Therefore, angle OAC = angle OCA (we will call this angle x) and angle OBC = OBA (we will call this angle y).Our angle at point C, therefore is equal to x+y.We can now return to the original triangle (A,B,C) and using our triangle knowledge we can say:x+y+(x+y)=1802x+2y=180x+y=90

DW
Answered by David W. Maths tutor

4130 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the mid point of the line A B, where A is (8,-1) and B is (2,5).


Solve the simultaneous equations: 4x+5y = 38 , x-y = 5


A graph is given with a plot of y = sin(x) for 0 <= x <= 360. Which value of x in the range 90 <= x <= 180 satisfies sin(x) = sin(30)?


Why do square roots have more than 1 solution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences