How can I prove that an angle in a semi-circle is always 90 degrees?

If we take the diameter of a circle and create an angle on the circumference at point C of the circle from the two points where the diameter meets the circumference (points A and B), the angle created will always equal 90 degrees. To prove this we can draw a line from point C to the centre (point O). We have now created two isosceles triangles (O,A,C) and (O,B,C). Therefore, angle OAC = angle OCA (we will call this angle x) and angle OBC = OBA (we will call this angle y).Our angle at point C, therefore is equal to x+y.We can now return to the original triangle (A,B,C) and using our triangle knowledge we can say:x+y+(x+y)=1802x+2y=180x+y=90

DW
Answered by David W. Maths tutor

4027 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

White paint costs £2.80 per litre. Blue paint costs £3.50 per litre. White paint and blue paint are mixed in the ratio 3 : 2 Work out the cost of 18 litres of the mixture.


Two dice are thrown at the same time. What is the probability that the sum of the numbers on the dice is greater than 7?


find the roots of this following equation: 2x^2+18x+36


Given the ratio of x : y is 7 : 4 and x + y = 88. Work out the value of x – y


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences