A curve has equations: x=2sin(t) and y=1-cos(2t). Find dy/dx at the point where t=pi/6

Since this question concerns parametric's, one may move to eliminate t from the equation to calculate dy/dx directly. However, in this case it is much easier to use the chain rule and realise that dy/dx=dy/dt*dt/dx=dy/dt/dx/dt. This is easier as both y and x are very simple to differentiate with respect to t and because the final part of the question involves substituting in a value of t. Differentiating y, the 1 disappears as it is a constant and the -cos(2t) goes to 2sin(2t) using the chain rule. X differentiates to 2cos(t). Using our chain rule from above, dy/dx=2sin(2t)/2cos(t). The 2s cancel. With our knowledge of the double angle formula sin(2t)=2sin(t)cos(t), leaving us with dy/dx=2sin(t)cos(t)/cos(t)=2sin(t). When t=pi/6 dy/dx=2sin(pi/6)=1.

CH
Answered by Cameron H. Maths tutor

5799 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Take the 2nd derivative of 2e^(2x) with respect to x.


a curve has an equation: y = x^2 - 2x - 24x^0.5 x>0 find dy/dx and d^2y/dx^2


The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?


differentiate: y^2 + 3xy + x + y = 8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning