A curve has equations: x=2sin(t) and y=1-cos(2t). Find dy/dx at the point where t=pi/6

Since this question concerns parametric's, one may move to eliminate t from the equation to calculate dy/dx directly. However, in this case it is much easier to use the chain rule and realise that dy/dx=dy/dt*dt/dx=dy/dt/dx/dt. This is easier as both y and x are very simple to differentiate with respect to t and because the final part of the question involves substituting in a value of t. Differentiating y, the 1 disappears as it is a constant and the -cos(2t) goes to 2sin(2t) using the chain rule. X differentiates to 2cos(t). Using our chain rule from above, dy/dx=2sin(2t)/2cos(t). The 2s cancel. With our knowledge of the double angle formula sin(2t)=2sin(t)cos(t), leaving us with dy/dx=2sin(t)cos(t)/cos(t)=2sin(t). When t=pi/6 dy/dx=2sin(pi/6)=1.

CH
Answered by Cameron H. Maths tutor

5444 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = x^2 +2x + 3, find dy/dx.


Using substitution, integrate x(2 + x))^1/2 where u^2 = 2 + x


Core 3: Find all the solutions of 2cos(2x) = 1-2sin(x) in the interval 0<x<360


Solve ∫(x+2)/(2x^2+1)^3 dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning