Consider the functions f(x) = −x^3 + 2x^2 + 3x and g(x) = −x^3 + 3x^2 − x + 3. (a) Find df/dx (x) and hence show that f(x) has turning points at when x = 2 /3 ± √ 13/ 3 . [5] (b) Find the points where f(x) and g(x) intersect. [4]

a) First differentiate f(x) using standard polynomial derivative rules which gives, df/dx=-3x^2+4x+3. The derivative function gives the gradient of f for any value of x. Turning points occur when the gradient is zero, thus where can find the turning points by finding the values of x that solve df/dx=0. This is -3x^2+4x+3=0. We can use the quadratic formula (-b±√(b^2-4ac))/2a to solve this equation. Substituting in a=-3, b=4, c=3 and using surd rules within the square root gives x = 2 /3 ± √ 13/ 3 as required. b) The functions intersect when they equal one another. i.e. the x coordinates of the points of intersection are found by solving −x^3 + 2x^2 + 3x=−x^3 + 3x^2 − x + 3. Adding x^3 to both sides gives 2x^2 + 3x= 3x^2 − x + 3 which leads to x^2-4x+3=0. This can be factorised as (x-3)(x-1)=0 so the values of x which solve this equation are x=3 and x=1. To find the y coordinates we calculate f(1)=4 and f(3)=0. So the points of intersection are (1,4) and (3,0).

GA
Answered by George Alexander L. Maths tutor

6156 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the tangent to the curve with the equation y = (3x^4 - 18)/x at the point where x = 3


C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)


How would you go about integrating a function which has an exponential and a cos/sin term?


If a ball is dropped from 6m above the ground, how long does it take to hit the floor and what is its speed at impact (assuming air resistance is negligible)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences