How can I find the stationary point of y = e^2x cos x?

At a stationary point of y, dy/dx = 0.Step 1: Let's find dy/dx first by differentiating. To differentiate the product of two functions, we can use the product rule:d(fg)/dx = f * dg/dx + df/dx * g. So dy/dx = d(e^2x cos x)/dx = (e^2x) * (-sin x) + (2e^2x) * cos x = 2e^2x cos x - e^2x sin x.Step 2: Now we've found dy/dx, we can set it to 0. So we can set 2e^2x cos x - e^2x sin x = 0. Therefore 2e^2x cos x = e^2x sinx. We can cancel e^2x from each side because it is never equal to zero, therefore 2cos x = sin x. Dividing by cos x gives 2 = tan x. We can use arctan now to find x: arctan 2 = arctan(tan x) = x. Now finally we know x, so we can find y by plugging into our original equation: y = e ^ (2*arctan2) * cos (arctan2) = 4.09

MT
Answered by Meg T. Maths tutor

12145 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is ln(10)-ln(5)?


Find the area of the region, R, bounded by the curve y=x^(-2/3), the line x = 1 and the x axis . In addition, find the volume of revolution of this region when rotated 2 pi radians around the x axis.


Differentiate 7(3x^2+7)^(1/3)


Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences