What height do geostationary satellites orbit above the Earths surface?

You are given the following values: Me = 6x1024 kgRe = 6.37x106 mA geostationary satellite appears to an observer on the ground to always be at the same position on the sky. This means its orbit must be circular with a period of T = 24hr. [Strictly geostationary orbits are also equatorial, otherwise the position would oscillate north/south].For a circular orbit the centripetal force is provided by the gravitational force from the Earth (Fg = Fc). The formulae for these forces are:Fg = GMm/(r2)Fc = mw2r (or mv2/r then use v = wr)Equating leads to:GMm/(r2) = mw2r Rearrangement gives:r3 = GM/(w2)Substituting w = 2pi*f = 2pi/T and taking the cube root gives:r = cuberoot( GMT2/ 4pi2)BUT this is the distance of the orbit from the centre of the Earth, for its height above the surface we have to subtract Re.h = r - Re = cuberoot( GMT2 / 4pi2) - ReSubstituting the values given at the start of the question, the value of G, and converting T = 24hr = 86400s gives:3.59x106 m or ~36,000 km.

WM
Answered by Will M. Physics tutor

10253 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Show that a pendulum undergoes simple harmonic motion (SHM). State your assumptions. The pendulum is made up of a light inextensible string, attached to a ceiling at one end and with a particle of mass m attached to the other end.


A 1.6m long string fixed at both ends vibrates at its fundamental frequency... (i)what is this frequency?


An object with weight w is suspended from two strings at angles θ1 and θ2 to the vertical and with tensions T1 and T2. How would you resolve the vertical and horizontal forces?


The mass of the Earth is 6.0x10^24 kg and its radius is 6.4x10^6m, calculate the orbital speed of the moon around the earth, the orbit of the moon is a circle of approximate radius of 60R where R is the radius of the earth and a mass m.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning