Answers>Maths>IB>Article

Find out the stationary points of the function f(x)=x^2*e^(-2x)

Using the product rule (u'v+v'u, where u and v are the chosen substitutes) to find the first derivative will be dy/dx=x'=2xe^(-2x)+x^(2)e^(-2x)(-2)=2xe^(-2x)(x-x^2). This will give the details about the slope of the given function at any instance of time.If the stationary points are to be find the second derivative of the should be found as shown;d^(2)y/dx^2=2e^(-2x)(1-4x+2x^2). Stationary point will give the points where the gradient is zero.Therefore by saying d^(2)y/dx^2=0, the stationary points can be found and for this example those values are calculated as x=1+1/sqrt(2) and 1-1/sqrt(2).

BI
Answered by Bilkan I. Maths tutor

3106 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

A sequence of numbers have the property that x, 12, y, where x > 0, y > 0, form a geometric sequence while 12, x, 3y form an arithmetic sequence. A)If xy = k, find k. B)Find the value of x and y.


Consider the arithmetic sequence 5,7,9,11, …. Derive a formula for (i) the nth term and (ii) the sum to n terms. (iii) Hence find the sum of the first 20 terms.


Find an antiderivative to the function f(x) = e^x cos(x)


Given 1/2 + 1 + 2 + 2^2 + ... + 2^10 = a*2^b + c, find the values of a,b,c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning