n is an integer such that 3n + 2 ≤ 14, and 6n/(n^2 + 5) >1. Find all possible values of n.

Step 1: Simplify 3n + 2 ≤ 14 3n ≤ 12 n ≤ 4 and 6n > n^2 + 5 0 > n^2 -6n + 5 Factorise (n-5)(n-1) < 0
Step 2: Let (n-5)(n-1) = 0, so n=5 or n=1 If (n-5)(n-1) < 0, then 1<n<5 (use graph/substitution)
Step 3: Combine, n can take values 2,3,4.

CM
Answered by Catriona M. Maths tutor

10595 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you rearrange x = (2y+1)/(3y+4) to get y in terms of x?


How do I expand a factorised equation?


Factorise fully y=x^2+x-12 and hence find the roots of the curve


Solve the quadratic 2x^2+7x+6 by completing the square


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences