n is an integer such that 3n + 2 ≤ 14, and 6n/(n^2 + 5) >1. Find all possible values of n.

Step 1: Simplify 3n + 2 ≤ 14 3n ≤ 12 n ≤ 4 and 6n > n^2 + 5 0 > n^2 -6n + 5 Factorise (n-5)(n-1) < 0
Step 2: Let (n-5)(n-1) = 0, so n=5 or n=1 If (n-5)(n-1) < 0, then 1<n<5 (use graph/substitution)
Step 3: Combine, n can take values 2,3,4.

CM
Answered by Catriona M. Maths tutor

11279 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f is a function such that f(x)=2/(3x-3) Find the inverse function and ff^-1


ABCD is a regular paralleogram, A=(2,1) B=(7,2) and C=(4,6), work out the gradient of the line CD and then work out the area of ABCD.


Solve n^2 – n – 90 = 0 to find value of n


There are 10 boys and 20 girls in a class. The class has a test. The mean mark for all the class is 60. The mean mark for the girls is 54. Work out the mean mark or the boys.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning