(Core 3 level) Integrate the function f(x) = 2 -cos(3x) between the bounds 0, pi/3.

f(x) = 2 - cos(3x)integrate function x term2 -> 2x (raise power of x then divide by new power for polynomial functions of x) -cos(3x) -> -(1/3)(sin(3x)) (using a substitution of 3x = u, then cos(u) integrates to sin(u)) Answer:2x - (1/3)(sin(3x)) + csubstituting bounds,(2*(pi/2) - (1/3(sin(3pi/3))) - (20 - (1/3)(sin(30/3)) = 2pi/3 - 0 = 2pi/3.

RG
Answered by Riku G. Maths tutor

3564 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx of 5x^2 + 2y^3 +8 =17.


Find all solutions to the equation 8sin^2(theta) - 4 = 0 in the interval 2(pi) < (theta) < 4(pi)


How do we use the Chain-rule when differentiating?


y = x*(x-2)^-1/2. Prove dy\dx = (x-4)/2*(x-2)^3/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning