The curve with the equation: y=x^2 - 32sqrt(x) + 20 has a stationary point P. Find the coordinates of P.

A stationary point implies that the gradient at this point will be equal to 0, it is a turning point in the graph. So we need to find the value of X at which dy/dx = 0. [where dy/dx is the gradient.]So we first differentiate the equation Y with respect to X giving us: dy/dx = 2x + 16x^(-0.5) [using simple differentiation, i.e. bring the power down, and take 1 away from the power]We would now equate this to 0, as this will tell us when the gradient is equal to 0.so 2x + 16x^(-0.5) = 0Now solve for x: equation simplifies to x^(1.5) = 8, which tells us that X=4We now have X, we need to work out the Y value at this point. So we substitue X=4 into the equation of the curvey=4^2 - 32sqrt(4) + 20, which tells us that Y= -28. So point P(4,-28)

MB
Answered by Maninder B. Maths tutor

9372 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(a) Express 9x+11/(2x+3)(x-1) as partial fractions and (b) find the integral of 9x+11/(2x+3)(x-1) with respect to x


Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.


3 green balls, 4 blue balls are in a bag. A ball is removed and then replaced 10 times. What is the probability that exactly 3 green balls will be removed?


How to draw the inverse of a function ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences