Solve the simultaneous equations: (1) x^2 + y^2 = 25 and (2) y - 3x = 13

Sub (2) y = 13 + 3x into (1)x^2 + (13 + 3x)^2 = 25x^2 + 169 + 39x + 39x + 9x^2 = 2510x^2 + 78x + 144 = 05x^2 + 39x + 72 = 0 (/2)572 = 360 - need ab=360 such that a+b=39a = 24 b = 155x^2 + 24x + 15x + 72 = 0x(5x + 24) + 3(5x + 24) = 0 [take out the gcf, greatest common factor](x + 3)(5x + 24) = 0x = -3x = -24/5y = 13 + 3(-3) = 4y = 13 + 3(-24/5) = -7/5

MM
Answered by Meghna M. Maths tutor

3060 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation 10x + 4 = 12x + 2


How do you solve the quadratic equation x^2+7x+12=0


How do you solve simultaneous equations?


The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) The straight line L2 passes through the origin and has gradient -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning