Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.

  1. Identify that this is a rate of change question and set up the boundary conditions of V = 5 when t = 02) Take the dt to the right side and explain to integrate both sides of the equation to 'sum over all the tiny bits of time and tiny bits of V'3) Plug in the boundary conditions as a constant will drop out, and finally put t=4 into the formula. Write answer WITH UNITS.
TW
Answered by Tommy W. Maths tutor

3581 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate: (12x^3)+ 4x + 7


Given the two curves y1 and y2, verify the two curves intersect at (-5,0) and (2,0)


y = 4x/(x^2+5). a) Find dy/dx, writing your answer as a single fraction in its simplest form. b) Hence find the set of values of x for which dy/dx < 0


Why does differentiation give us the results that it does?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning