Integrate 2x^4 - 4/sqrt(x) + 3 dx

First we will simplify 4/sqrt(x) so it is easier to integrate.sqrt(x) is equal to x1/2, therefore 4/sqrt(x) = 4/x1/2 .We bring up x1/2 so 4/x1/2 becomes 4x-1/2 .So now we will integrate the simplified equation 2x4 - 4x-1/2+ 3.To integrate we add one to the power and divide by the new power. To numbers without an x, we add an x.Therefore we get 2x5/5 - 4x1/2/(1/2) + 3x + c.Simplified this is, 2/5x5 - 8x1/2 + 3x + c.When integrating, always remember to add c, this represents a constant.

MA
Answered by Maleehah A. Maths tutor

7945 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent and normal to the curve y=(4-x)(x+2) at the point (2, 8)


Integrate 1/((1-x^2)^(1/2)) by substitution


Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.


Find ∫(8x^3 + 4) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning