Prove that n(n+5) + 2(n+3) is always a product of two numbers with a difference of 5.

n(n+5)+2(n+3) = n2+5n+2n+6 = n2+7n +6 = (n+6)(n+1) = (n+6) x (n+1).
The difference between (n+6) and (n+1) is 5, so this is a product of two numbers with a difference of 5.

EG
Answered by Eleanor G. Maths tutor

4205 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations: 3x+y-2z = -2, y+4z = 1, 10x+2y+5z=26


Write down 9.02x10^-3 and 2.6x10^5?


Solve the inequality 5x - 7 > 2x +5


What is the perpendicular bisector of the point (0,2) and (1,0)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning