Prove that n(n+5) + 2(n+3) is always a product of two numbers with a difference of 5.

n(n+5)+2(n+3) = n2+5n+2n+6 = n2+7n +6 = (n+6)(n+1) = (n+6) x (n+1).
The difference between (n+6) and (n+1) is 5, so this is a product of two numbers with a difference of 5.

EG
Answered by Eleanor G. Maths tutor

4237 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 6x + 2y = -3, 4x - 3y = 11


How to solve a quadratic equation?


L is a line parallel to 4x-2y=8. Find the equation of the line if L passes through (4,(38/3))


Issy goes to buy some fruit. She has been told by one friend that 2 apples and 3 bananas costs £3.80. She has been told by another friend that 5 apples and a banana costs £3.65. what are the individual costs of an apple and a banana?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning