Differentiate y = 5x^3 + 7x + 3 with respect to x

When differentiating with respect to x, we multiply the coefficient of the 'x' by the power of the 'x', and subtract one from the power of 'x'. For example:y = 5x^5dy/dx = (55)x^(5-1) = 25x^4If the power of 'x' is then 0, this will mean that we remove the 'x' from the differentiated equation. This is because any number to the power of 0 (e.g. 5^0) will always equal one. Therefore the coefficient of the 'x' will be just one its own. For example:y = 3x = 3x^1dy/dx = 3x^(1-1) = 3x^0 = 3Finally, differentiating a number that is not a coefficient to the variable that we are differentiating with respect to will result in the number being removed from the differentiated result. For example:y = 9x + 3dy/dx = 9 + 0 = 9The 3 has therefore been removed as it was not a coefficient of any 'x' variable.With this knowledge, we can now answer the initial question.{ANSWER: 5x^3 + 7x +3 = (53)x^(3-1) + 7x(1-1) + 0 = 15x^2 + 7x^0 = 15x^2 + 7}

JK
Answered by Jordan K. Maths tutor

3509 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area enclosed by the curve y = 3x - x^2 and the x-axis


Find the differential of the equation: x^2(2x+5)


How do you find the acute angle between two intersecting lines whos equations are given in vector form?


Derive the quadratic formula. From it, write down the determinant and explain, how is it related to the roots of a quadratic equation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences