How do you find the x co-ordinates of the stationary points of a curve with the equation y = 10x - 2x^2 - 2x^3

First to find the stationary points, you have to differentiate the equation of the curve y, to give you (dy/dx) = 10 - 4x - 6x^2After differentiating the equations, the points at which the curve is stationary is where the differential of the curve is 0. Making (dy/dx) = 0 = 10 - 4x - 6x^2, this equation could be solved by factorising the equation. So to find common factors, let's take ax^2 + bx + c = 0 as the example base equation, to find the common factors, you'll need two numbers that will give 'b' when added together and the product of 'a' and 'c' when multiplied together, so in the case of (dy/dx) = 10 - 4x - 6x^2, our two factors will be -10 and +6, therefore (dy/dx) = 10 - 10x + 6x - 6x^2, grouping like terms would make (dy/dx) = (10 + 6x)(1 - x) = 0Therefore the x co-ordinates of the equation y, are x = 1 and -5/3

DM
Answered by David M. Maths tutor

3160 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the line with equation ax + by + c = 0 has gradient -a/b and cuts the y axis at -c/b?


Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)


The function f is defined by f(x)= 2/(x-3) + x - 6 . Determine the coordinates of the points where the graph of f intersects the coordinate axes.


Find ∫ x^2(ln(4x))dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences