Solve (x^2 - 4)/(2x+4)

The common mistake the students make is to simplify the fraction before factorising numerator and denominator. Here, we need to see that the numerator: x^2 - 4 is a difference between squares, i.e. A^2 - B^2 = (A+B)(A-B). Having recognised that, x^2-4 = (x+2)(x-2) and this can be proved by doing the inverse multiplication back to the original question. Similarly (but easier), the denominator: 2x+4 -> the two terms have a 2 in common, so it can be rewritten: 2(x+2)At this point, and ONLY at this point, this can be simplified by recognising that the factor x+2 is present both at numerator and at denominator.So the final result is: (x-2)/2Many students attempt to cancel out terms before factorising, so it is important to show that this is not the right procedure.

MM
Answered by Martina M. Maths tutor

3406 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A shop sells bags of crisps in different size packs. There are 18 bags of crisps in a small pack (£4), 20 bags of crisps in a medium pack (£4.99) and 26 bags of crisps in a large pack (£6). Which size pack is the best value for money?


Solve the equation x^2-x-56=0


Factorise x² + 6x + 8


(i) Find the point(s) where the curve y=x^2-2x+1 crosses the x-axis, and (ii) find the coordinates of the vertex of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences