Sketch y = 9x – 4x^3, showing where the curve crosses the x axis.

First you should look at the equation and try and get a sense of the general shape of the graph. The highest power in here is a 3, so this is a cubic graph. The coefficient (number in front of the x^3) is a negative, so it will be a negative cubic graph (draw what this looks like.) Next, we need to figure out where the curve intersects the x axis. To do this, we will first factorise the equation to make it simpler to understand (spot the difference of 2 squares in the factorisation), and then find all values of x when y=0, as this will be the points where the curve cuts the x axis.

AE
Answered by Anais E. Maths tutor

5028 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I try and solve this differentiation, I don`t understand it?


Find the turning points on the curve with the equation y=x^4-12x^2


Using the product rule, differentiate y=(2x)(e^3x)


The circle C has centre (2,1) and radius 10. The point A(10,7) lies on the circle. Find the equation of the tangent to C at A and give it in the form 0 =ay + bx + c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning