Given y = 2sin(θ) and x = 3cos(θ) find dy/dx.

The function is defined parametrically so we usually approach these questions using chain rule.Recall that: dy/dθ * dθ/dx = dy/dx So we will need to differentiate each expression individually then multiply them together.Differentiating the first with respect to θ we get:(1)   dy/dθ = 2cos(θ) ,then the expression for x gives us: dx/dθ = -3sin(θ) , We can then remember that differentials behave as fractions so we can flip both sides to get:(2)  dθ/dx = -1/3sin(θ) . Remembering chain rule we can multiply (1)*(2) to get dy/dx: dy/dθ * dθ/dx = 2cos(θ) * -1/3sin(θ) --> dy/dx = -2cos(θ)/3sin(θ)

JC
Answered by Jacob C. Maths tutor

5397 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = f(x) and passes through the point (4, 22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7, use integration to find f(x), giving each term in its simplest form


Simplify (7+sqrt(5))/(sqrt(5)-1), leaving the answer in the form a+b*sqrt(5)


How do you find the equation of a tangent to a curve at a particular point?


Sketch the graph of f(x) = sin(x). On the same set of axes, draw the graph of f(x)+2, f(2x) and f(-x). By observing your graphs of f(x) and f(x), if f(a)=1, what is the value of f(-a)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning