Given y = 2sin(θ) and x = 3cos(θ) find dy/dx.

The function is defined parametrically so we usually approach these questions using chain rule.Recall that: dy/dθ * dθ/dx = dy/dx So we will need to differentiate each expression individually then multiply them together.Differentiating the first with respect to θ we get:(1)   dy/dθ = 2cos(θ) ,then the expression for x gives us: dx/dθ = -3sin(θ) , We can then remember that differentials behave as fractions so we can flip both sides to get:(2)  dθ/dx = -1/3sin(θ) . Remembering chain rule we can multiply (1)*(2) to get dy/dx: dy/dθ * dθ/dx = 2cos(θ) * -1/3sin(θ) --> dy/dx = -2cos(θ)/3sin(θ)

JC
Answered by Jacob C. Maths tutor

5394 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y = x^2 − 2x − 24x^(1/2) x > 0 find dy/dx


Rationalise the denominator of \frac{6}{\sqrt{2}}.


Prove that (root)2 is irrational


use the substitution u=2+ln(x) to show that int(e,1(ln(x)/x(2+ln(x)^2))dx)=p+ln(q) , where p and q are rational numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning