How do you differentiate 2 to the power x?

let y=2x                 {take natural logs of both sides}

ln y = ln(2x)          {use rules of logs to change right hand side}

lny = xln2              {differentiate implicitly}

1/y dy/dx = ln2    {make dy/dx the subject}

dy/ dx       = y ln2  {write y in terms of x)

dy/dx = 2x . ln2

Therefore derivative of 2 to the power of x is 2x . ln2

 

This can be generalised as the derivative of a to the power of x (where a is a constant, a>0)  is  ax lna

JR
Answered by Jack R. Maths tutor

153584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

give the coordinates of the stationary points of the curve y = x^4 - 4x^3 + 27 and state with reason if they are minumum, maximum, or points of inflection.


When and how do I use the product rule for differentiation?


Use the substitution u=4x-1 to find the exact value of 1/4<int<1/2 ((5-2x)(4x-1)^1/3)dx


How would I prepare for my Maths exams so that I get the best grade possible?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning