Prove by induction that, for n ∈ Z⁺ , [3 , -2 ; 2 , -1]ⁿ = [2n+1 , -2n ; 2n , 1-2n]

STEP 1: Prove that the theorem holds for n = 1. Substitute n = 1 into the equation and show that the LHS = RHS.
STEP 2: Assume that the relation is true when n = k.
STEP 3: Prove that the relation holds for n = k + 1, using the fact that it is true when n = k. This can be done by multiplying the matrix  [2k+1 , -2k ; 2k , 1-2k] by the matrix  [3 , -2 ; 2 , -1] (equivalent of raising the power on the LHS by 1). Simplifying and rearranging the result will yield: [2(k+1) +1 , -2(k+1) ; 2(k+1) , 1-2(k+1)].
STEP 4: Result shows that the equation holds when n = k + 1. Thus, if true for n = 1, must be true for all positive integers.

FT
Answered by Flavia T. Maths tutor

5134 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate a trigonometric function for something that is not just a single variable (e.g. d/dx (sin(3x))?


Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.


Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


Find the coordinates of the minimum point of the curve y = 3x^(2) + 9x + 10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences