Prove by induction that, for n ∈ Z⁺ , [3 , -2 ; 2 , -1]ⁿ = [2n+1 , -2n ; 2n , 1-2n]

STEP 1: Prove that the theorem holds for n = 1. Substitute n = 1 into the equation and show that the LHS = RHS.
STEP 2: Assume that the relation is true when n = k.
STEP 3: Prove that the relation holds for n = k + 1, using the fact that it is true when n = k. This can be done by multiplying the matrix  [2k+1 , -2k ; 2k , 1-2k] by the matrix  [3 , -2 ; 2 , -1] (equivalent of raising the power on the LHS by 1). Simplifying and rearranging the result will yield: [2(k+1) +1 , -2(k+1) ; 2(k+1) , 1-2(k+1)].
STEP 4: Result shows that the equation holds when n = k + 1. Thus, if true for n = 1, must be true for all positive integers.

FT
Answered by Flavia T. Maths tutor

5640 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a complex number?


Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).


Calculate dy/dx of the following equation: y = 3x^3 - 6x^2 + 2x - 6


Find the derivative of sinx, use that to find the derivative of xsinx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning