How to integrate by parts

Sometimes while integrating, we may come across an expression that is not a polynomial, and thus we cannot use the convenient power rule to integrate. Consider the function y=xcos(x). It is not immediately clear how we should start we this one, however upon further inspection, we may introduce the technique of Integrating by Parts. Essentially we split the function into two parts, say u and v, and then employ a formula which allows us to integrate them together:

∫u·dv = u·v − ∫v·du

Applying this to our function, we obtain

∫x·cos(x) dx = u·v − ∫v·du

Here we note that integrating cos(x) is a lot simpler than integrating x, and differentiating x is also simpler than differentiating cos(x), so it would make sense to set

u = x and dv = cos(x)

This in turn gives us

du = 1 and v = sin(x)

Thus plugging these values back into our original formula, we get

∫x·cos(x)= x·sin(x) - ∫sin(x)·1

So now, all we need to do is integrate sin(x), which is definitely easier than what we started with. Thus, the end product gives us 

∫x·cos(x)= x·sin(x) + cos(x) + C

where C of course is the constant of integration.

DL
Answered by Dennis L. Maths tutor

4618 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ln(x).


Given that x = 1/2 is a root of the equation 2x^3 – 9x^2 + kx – 13 = 0, find the value of k and the other roots of the equation.


A cannon at ground level is firing at a fort 200m away with 20m high walls. It aims at an angle 30 degrees above the horizontal and fires cannonballs at 50m/s. Assuming no air resistance, will the cannonballs fall short, hit the walls or enter the fort?


Express '6cos(2x) +sin(x)' in terms of sin(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning