Consider an isosceles triangle ABC, where AB=AC=1, M is the midpoint of BC, and <BAM=<CAM=x. Use trigonometry to find an expression for BM and by finding BC^2, show that cos2x = 1 - 2(sinx)^2.

Consider the right-angled triangle BAM. We have the hypotenuse and an angle, and want to find the opposite side. Therefore, using SOHCAHTOA, sinx = BM/1, hence BM = sinx. Because M is the midpoint of BC, BC = 2BM = 2sinx. Hence, BC2 = 4(sinx)2Looking at triangle ABC, we have an expression for all sides (AB=AC=1, BC=2sinx) and we have the angle at A (2x). Therefore, we can use the cosine rule to find an expression for BC2.a2 = b2 + c2 - 2bc(cosA).BC2 = 4(sinx)2 = 12 + 12 - 2(1)(1)(cos2x)4(sinx)2 = 2 - 2cos2x2(sinx)2 = 1 - cos2xcos2x = 1 - 2(sinx)2

BS
Answered by Blessie S. Maths tutor

6153 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

√(6^2+8^2)=^3√125a^3


Katie buys: 3 pens costing £2.20 each, 1 rubber costing £1.60 and 2 pencils. She pays with a £10 note and a £2 coin. She gets 20p change. What was the price of each pencil?


A lorry can travel 35 miles per litre of diesel that costs £7.30 per litre. What is the cost in £ (to the nearest 2 decimal places) of the diesel used in driving the lorry 200 miles?


Solve the simultaneous equations: 2x+2y=12 x-y=8 You must show your working


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning