Solve the inequality x^2 < -8x + 9

Notice that the inequality may be rearranged to give the quadratic x^2 + 8x - 9 < 0.Factorise the quadratic to give (x-1)(x+9) < 0.Treating the expression as an equality, recall that if the product of two values is equal to zero then at least one of those values must be zero. Hence notice that the roots to the equation are 1 and -9. We are only interested in the values of the quadratic below zero, check if the parts of the quadratic below x=0 are converging or diverging.Since the two ends of the line are converging the solution must be -9 < x < 1.It may be useful to attempt to solve the question graphically as well as numerically.

IS
Answered by Isaac S. Maths tutor

3557 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I struggle with time management whilst doing an exam paper. How will I be able to answer every question in the time given for the exam?


Solve the next innequation: 12x-4>4x+12


Sarah plans to paint a rectangular wall of dimensions 8.7m x 2.3m. A tin of paint costs £16.10 and covers 6 metres squared. Sarah has a budget of £56, can she afford to paint the wall? Explain your reasoning.


The equation of line L1 is y=5x-2. The equation of line L2 is 4y-20x=6. Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences