How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.

First we should be aware of the relationship bewteen the denominator of the two fractions. Since x^2-9=(x+3)(x-3), we can multiply (x-3) on both numerator and denominator of the fraction of 2/(x+3). Hence the fraction becomes 2(x-3)/(x+3)(x-3)=2(x-3)/(x^2-9). Therefore now we can substract it from the first fraction, becomes (4x)/(x^2-9)-2(x-3)/(x^2-9). Since the denominator is the same, so we can substact the numerator straightaway. And the next step will be [4x-2(x-3)]/(x^2-9)=(2x-6)/(x^2-9)=2(x-3)/(x^2-9). Be aware here that (x^2-9) can be split into (x+3)(x-3). This is a very common mistake. Hence devide (x-3) from both denominator and numerator and final answer will be 2/x+3.

KY
Answered by Kexin Y. Maths tutor

4459 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify ln(e^2) - 4ln(1/e)


If x=-2,1,2 and the y intercept is y=-8 for y=ax^3+bx^2+cx+d, what is a, b, c and d


Find the first derivative of r=sin(theta+sqrt[theta+1]) with respect to theta.


Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning