How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.

First we should be aware of the relationship bewteen the denominator of the two fractions. Since x^2-9=(x+3)(x-3), we can multiply (x-3) on both numerator and denominator of the fraction of 2/(x+3). Hence the fraction becomes 2(x-3)/(x+3)(x-3)=2(x-3)/(x^2-9). Therefore now we can substract it from the first fraction, becomes (4x)/(x^2-9)-2(x-3)/(x^2-9). Since the denominator is the same, so we can substact the numerator straightaway. And the next step will be [4x-2(x-3)]/(x^2-9)=(2x-6)/(x^2-9)=2(x-3)/(x^2-9). Be aware here that (x^2-9) can be split into (x+3)(x-3). This is a very common mistake. Hence devide (x-3) from both denominator and numerator and final answer will be 2/x+3.

KY
Answered by Kexin Y. Maths tutor

4230 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x)=xln(x)-x. Find f'(x). Hence or otherwise, evaluate the integral of ln(x^3) between 1 and e.


(5 + 2(2^0.5))(7 - 3(2^0.5))


i) Using implicit differentiation find dy/dx for x^2 + y^2 = 4 ii) At what points is the tangent to the curve parallel to the y axis iii) Given the line y=x+c only intersects the circle once find c given that c is positive.


Curves C1 and C2 have equations y= ln(4x-7)+18 and y= a(x^2 +b)^1/2 respectively, where a and b are positive constants. The point P lies on both curves and has x-coordinate 2. It is given that the gradient of C1 at P is equal to the gradient of C2 at P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning