How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.

First we should be aware of the relationship bewteen the denominator of the two fractions. Since x^2-9=(x+3)(x-3), we can multiply (x-3) on both numerator and denominator of the fraction of 2/(x+3). Hence the fraction becomes 2(x-3)/(x+3)(x-3)=2(x-3)/(x^2-9). Therefore now we can substract it from the first fraction, becomes (4x)/(x^2-9)-2(x-3)/(x^2-9). Since the denominator is the same, so we can substact the numerator straightaway. And the next step will be [4x-2(x-3)]/(x^2-9)=(2x-6)/(x^2-9)=2(x-3)/(x^2-9). Be aware here that (x^2-9) can be split into (x+3)(x-3). This is a very common mistake. Hence devide (x-3) from both denominator and numerator and final answer will be 2/x+3.

KY
Answered by Kexin Y. Maths tutor

3971 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to write an algebraic fraction in a given form e.g. (3+13x-6x^2)/(2x-3) as Ax + B + C/(2x-3) where A, B and C are natural numbers


How do I find the area bounded by the curve y=-x^2+4 and the line y=-x+2?


A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


Show how to derive the quadratic formula


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences