How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.

First we should be aware of the relationship bewteen the denominator of the two fractions. Since x^2-9=(x+3)(x-3), we can multiply (x-3) on both numerator and denominator of the fraction of 2/(x+3). Hence the fraction becomes 2(x-3)/(x+3)(x-3)=2(x-3)/(x^2-9). Therefore now we can substract it from the first fraction, becomes (4x)/(x^2-9)-2(x-3)/(x^2-9). Since the denominator is the same, so we can substact the numerator straightaway. And the next step will be [4x-2(x-3)]/(x^2-9)=(2x-6)/(x^2-9)=2(x-3)/(x^2-9). Be aware here that (x^2-9) can be split into (x+3)(x-3). This is a very common mistake. Hence devide (x-3) from both denominator and numerator and final answer will be 2/x+3.

KY
Answered by Kexin Y. Maths tutor

4144 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

evaluate the integral 2x/((9+x^2)^1/2) between -2 and 0


How do I integrate by parts?


1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


Use integration by parts to find the integral of xsinx, with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning