Find the exact gradient of the curve y=ln(1-cos2x) at the point with x-coordinate π/6

This is a past paper question for an A level OCR MEI paper for Maths.We need to find the gradient of the curve so we know right away that we need to use differentiation.The equation y = ln(1-cos2x) is difficult to differentiate by itself so we use the chain rule and a substitution. We say y = ln(u) where u = 1-cos2x.dy/du = 1/u. This is something you just have to learn, that the differential of y= lnx is 1/x.If you're stuck with finding du/dx, you can use another substitution if you want where u = 1-cosv and v = 2x, but most people know (after a lot of practice) that the differential of y=coskx is -ksinkx. I believe it's also in most formula books.So here du/dx = -2sin2x (remember the change of sign when going from cos to sin when differentiating).So from the chain rule, we know that dy/dx = dy/du x du/dx so dy/dx = 1/u x -2sin2x = -2sin2x/u and u = 1-cos2x so dy/dx = -2sin2x/(1-cos2x)Now we need to find the value of this gradient when x = π/6dy/dx = -2sin2x/(1-cos2x) = -2sin(2 x π/6)/(1-cos(2 x π/6)) = -2sin(π/3)/(1-cos(π/3)) Remember that we're working in radians here so for this, you need to put your calculator in radians tooWe know that cos(π/3) = 1/2 (or 0.5, but 1/2 is easier for the moment) and sin(π/3) = root(3)/2So dy/dx at x=π/3 gives (-2 x root(3)/2)/(1-1/2) => multiply top and bottom by 2 => -2root(3)/(2-1) = -2root(3)/1 = -2root(3)

CH
Answered by Catherine H. Maths tutor

13092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation 2x^2 + 6x + 7 = 0 has roots A and B. Write down the value of A + B and the value of AB


Integrate (x^2+4x+13)/((x+2)^2)(x-1) dx by using partial fractions


Find the values of x for which f(x) is an increasing function given that f(x)=8x-2x^2


Simplify (3x^2 - 6x)/ (6x^3 - 19x^2 + 9x +10)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences