How do you find the cube root of z = 1 + i?

Firstly we express z in polar form:
 
z = Reiθ
 
where |z| = (Re2 + Im2)0.5 = (12 + 12)0.5 = 20.5
 
θ = arg z = tan-1(Im/Re) = tan-1(1/1) = π/4
 
Therefore z = (20.5)eiπ/4
 
We can add on any multiple of 2π to the argument of z without affecting the value of the complex number:
 
z = (20.5)ei(π/4 + 2πn)
 
where n is an integer
 
We then take cube roots of both sides (not forgetting to cube root the modulus R as well as the exponent):
 
z1/3 = (21/6)ei(π/12 + 2πn/3) = (21/6)ei(π + 8πn)/12
 
Because we are calculating the cube root, we expect three solutions. To find these three roots, we substitute in three consecutive integers into n. We will choose n = 0, 1, 2.
 
Solution 1 (with n=0): z1/3 = (21/6)ei(π/12)
Solution 2 (with n=1): z1/3 = (21/6)ei(3π/4)
Solution 3 (with n=2): z1/3 = (21/6)ei(17π/12)
 
We can convert these back into Cartesian form using:
 
z = R
(cosθ + i sinθ)
 
We find that:
 
Solution 1: z1/3 =(21/6)
(cos(π/12) + i sin(π/12)) = 1.08 + 0.291i
Solution 2: z1/3 = (21/6)
(cos(3π/4) + i sin(3π/4)) = -0.794 +0.794i
Solution 3: z1/3 = (21/6)*(cos(17π/12) + i sin(17π/12)) = -0.291-1.084i

AE
Answered by Aldwyn E. Further Mathematics tutor

18637 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Can you express 3 + 4j in polar form?


Prove by induction that, for all integers n >=1 , ∑(from r=1 to n) r(2r−1)(3r−1)=(n/6)(n+1)(9n^2 -n−2). Assume that 9(k+1)^2 -(k+1)-2=9k^2 +17k+6


find an expression for the sum of the series of 1 + 1/2cosx + 1/4cos2x +1/8cos3x + ......


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning