Consider the function F(x)=17(x^4)+13(x^3)+12(x^2)+7x+2. A) differentiate F(x) B)What is the gradient at the point (2,440)

A point of notation:
'#' is the beginning of a comment, we will use comments to note down thoughts and tricks at each stage of the problem
A) let f(x) denote the differential of F(x)
F(x)=17(x^4)+13(x^3)+12(x^2)+7x+2 # start by rewriting out the question so you can see clearly what you have to do
f(x)=(174)(x^3)+(133)(x^2)+(122)(x^1)+7 #differentiate term by term, x^4 first then x^3 and so on...
f(x)=56(x^3)+39(x^2)+24x+7 #finished. sanity check - does this make sense? why?
B) Let A be the point (2,4) #x=2 and y=440
sub in x=2 to f(x) #we have a function of x, and want to know what that function is at x=2
so we have; f(2)= 56*(2^3)+39*(x^2)+24*(2)+7f(2)=448+156+48+7f(2)=659

DW
Answered by Dylan W. Maths tutor

3141 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

∫ log(x) dx


Starting from the fact that acceleration is the differential of velocity (dv/dt = a) derive the SUVAT equations.


express 9^(3x+1) in the form 3^(ax+b)


The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning