How to solve the simultaneous equations 3x+2y=7 and 5x+y=14

Firstly we rearrange one of these equations so that we have y on one side of the equation on its own. Let's do this with the second equation.

So from 5x+y=14, we can minus 5x from both sides to get:

y=14-5x

Then we can substitute this expression for y into our first equation that is 3x+2y=7

So we have 3x+2(14-5x)=7

Then we expand the bracket: 

3x+(2)(14)+(2)(-5x)=7

By simplifying this equation we get:

3x+28-10x=7

And simplifying further gives:

7x=21

By dividing both sides by 7, we find that x=3.

We substitute this value for x into either of our original equations to find the value of y.

3(3)+2y=7

So 2y=7-9

And therefore y=-1.

Finally we can check our solutions by substituting x=3 and y=-1 into the other original equation.

Therefore the solutions are x=3 and y=-1.

IB
Answered by Imogen B. Maths tutor

8968 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you find the length of a side of a right angled triangle when given the other two side lengths?


Why can’t you use the quadratic formula for every quadratic?


Without expanding any brackets work out the exact solutions of 9(x+3)^2=4


In trigonometry , how do you find the angles of a right angle triangle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning