If y = (4x^2)ln(x) then find the second derivative of the function with respect to x when x = e^2 (taken from a C3 past paper)

The first thing to recognise is that this function is a product of two functions: namely, 4x^2 and ln(x), thus we must employ the product rule in order to find the solution. As you may recall, the product rule states that when you have a function f(x) = uv, the differential f'(x) = udv + vdu, thus:

we differentiate once, finding that dy/dx = (4x^2)/x + 8xln(x) and simplify to get the expression 4x + 8xln(x)

then differentiate a second time, remembering to once again employ the product rule for the second term in the equation:

d^2y/dx^2 = 4 + (8 + 8ln(x))

now substitute the value of x = e^2 into the equation:

thus d^2y/dx^2 = 12 + 8ln(e^2)

now as we know that the natural logarithm "ln" is the inverse of the exponential function "e", this becomes:

d^2y/dx^2 = 12 + 8(2)

= 28.

CS
Answered by Caspar S. Maths tutor

14371 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Having a rectangular parking lot with an area of 5,000 square yards that is to be fenced off on the three sides not adjacent to the highway, what is the least amount of fencing that will be needed to complete the job?


What is the best way to prove trig identities?


Prove: (1-cos(2A))/sin(2A) = tan(A)


Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences