Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2

f(x) and g(x) are inverse functions when the following equations are true:f(g(x))=x
g(f(x))=xTo find (f(g)(x)) or (g(f(x)), use the inner function as the input for the outer function.
f(g(x))=-3((-x/3-2))-6 = x
g(f(x))= (-(-3x-6)/3)-2 = x, hence  f and g are inverse functions


SK
Answered by Sheela K. Maths tutor

3415 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following definite integral: f(x)=3e^(2x+1) for the limits a=0 and b=1, leaving your answer in exact form.


How does finding the gradient of a line and the area under a graph relate to real world problems?


How do you show some quadratic polynomials are always greater than 0?


Differentiate [ x.ln(x)] with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning