Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2

f(x) and g(x) are inverse functions when the following equations are true:f(g(x))=x
g(f(x))=xTo find (f(g)(x)) or (g(f(x)), use the inner function as the input for the outer function.
f(g(x))=-3((-x/3-2))-6 = x
g(f(x))= (-(-3x-6)/3)-2 = x, hence  f and g are inverse functions


SK
Answered by Sheela K. Maths tutor

3419 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the co-ordinates and nature of the stationary points on a curve?


By forming and solving a quadratic equation, solve the equation 5*cosec(x) + cosec^2(x) = 2 - cot^2(x) in the interval 0<x<2*pi, giving the values of x in radians to three significant figures.


What is y' when y=3xsinx?


Given that y = 4x^3 – 5/(x^2) , x not equal to 0, find in their simplest form (a) dy/dx, and (b) integral of y with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning