Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2

f(x) and g(x) are inverse functions when the following equations are true:f(g(x))=x
g(f(x))=xTo find (f(g)(x)) or (g(f(x)), use the inner function as the input for the outer function.
f(g(x))=-3((-x/3-2))-6 = x
g(f(x))= (-(-3x-6)/3)-2 = x, hence  f and g are inverse functions


SK
Answered by Sheela K. Maths tutor

3094 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line y=5-x intersects the curve y=x^2-3x+2 at the points P and Q. Find the (x,y) coordinates of P and Q.


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


Find dy/dx where y= x^3(sin(x))


integrate 5x + 3(square root of x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences