Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2

f(x) and g(x) are inverse functions when the following equations are true:f(g(x))=x
g(f(x))=xTo find (f(g)(x)) or (g(f(x)), use the inner function as the input for the outer function.
f(g(x))=-3((-x/3-2))-6 = x
g(f(x))= (-(-3x-6)/3)-2 = x, hence  f and g are inverse functions


SK
Answered by Sheela K. Maths tutor

2931 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integral between 0 and pi/2 of cos(x)sin^2(x)


Find dy/dx for f(x)=3x^2 +5x


Find the radius and centre of the circle given x^2+4x+y^2+2y=20


Differentiate 3x^2 + 6x^5 + 2/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences