It is given that n satisfies the equation 2*log(n) - log(5*n - 24) = log(4). Show that n^2 - 20*n + 96 = 0.

Given 2logan - loga(5n-24) = loga(4), we can rearrange to have all the "2logs" on one side and the "logs" on the other.So, 2logan = loga(4) + loga(5n-24). Using the laws of logs (alogn = log(na) and loga + logb = log(a*b)) we get, loga(n2) = loga(4(5n-24)). Since logarithms are a one-to-one function, n2 = 4(5n-24), which rearranges to n2 - 20n + 96 = 0

CS
Answered by Cara S. Maths tutor

4916 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For what values of k does the graph y=x^(2)+2kx+5 not intersect the x-axis


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


how do integrate an equation with a surd or a fraction?


How would you integrate ln(x) with respect to x?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences