It is given that n satisfies the equation 2*log(n) - log(5*n - 24) = log(4). Show that n^2 - 20*n + 96 = 0.

Given 2logan - loga(5n-24) = loga(4), we can rearrange to have all the "2logs" on one side and the "logs" on the other.So, 2logan = loga(4) + loga(5n-24). Using the laws of logs (alogn = log(na) and loga + logb = log(a*b)) we get, loga(n2) = loga(4(5n-24)). Since logarithms are a one-to-one function, n2 = 4(5n-24), which rearranges to n2 - 20n + 96 = 0

CS
Answered by Cara S. Maths tutor

5562 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrating (e^x)sin(x)


A ball is projected vertically upwards from the ground with speed 21 ms^–1. The ball moves freely under gravity once projected. What is the greatest height reached by the ball?


Prove that the d(tan(x))/dx is equal to sec^2(x).


Given an integral of a function parametrized with respect to an integer index n, prove a given recursive identity and use this to evaluate the integral for a specific value of n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning