Differentiation: How to use the chain rule

If y is a function of u, which itself is a function of x, then 

dy/dx=(dy/du) x (du/dx)

Differentiate the outer function and multiply by the derivative of the inner function.  

To illustrate this rule, look at the example below:

y=(2x+3)10

in which y=u10 and u=2x+3

Now,

dy/du=10u9=10(2x+3)9

du/dx=2

The chain rule then gives

dy/dx=(dy/du) x (du/dx) = 10(2x+3)9(2) = 20(2x+3)9

 

NH
Answered by Nicolas H. Maths tutor

5268 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.


How do I draw and sketch an equation?


Find the stationary point(s) on the curve 2xsin(x)


Differentiate y=x^3*(x^2+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning