Differentiation: How to use the chain rule

If y is a function of u, which itself is a function of x, then 

dy/dx=(dy/du) x (du/dx)

Differentiate the outer function and multiply by the derivative of the inner function.  

To illustrate this rule, look at the example below:

y=(2x+3)10

in which y=u10 and u=2x+3

Now,

dy/du=10u9=10(2x+3)9

du/dx=2

The chain rule then gives

dy/dx=(dy/du) x (du/dx) = 10(2x+3)9(2) = 20(2x+3)9

 

NH
Answered by Nicolas H. Maths tutor

5437 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve y = 4x^2 + a/x +5 has a stationary point. Find the value of the positive constant 'a' given that the y-coordinate of the stationary point is 32. (OCR C1 2016)


For what values of k does the graph y=x^(2)+2kx+5 not intersect the x-axis


How would you integrate (4x+1)^1/3 ?


A Curve has parametric equation x=2sin(t), y= 1+cos(2t), -pi/2<=t<=pi/2. a) Find dy/dx when t=pi/3. b) Find the Cartesian equation for the curve in form y=f(x), -k<=x<=k. c) Find the range of f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning