Differentiation: How to use the chain rule

If y is a function of u, which itself is a function of x, then 

dy/dx=(dy/du) x (du/dx)

Differentiate the outer function and multiply by the derivative of the inner function.  

To illustrate this rule, look at the example below:

y=(2x+3)10

in which y=u10 and u=2x+3

Now,

dy/du=10u9=10(2x+3)9

du/dx=2

The chain rule then gives

dy/dx=(dy/du) x (du/dx) = 10(2x+3)9(2) = 20(2x+3)9

 

NH
Answered by Nicolas H. Maths tutor

5490 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to solve the absolute-value inequalities?


How do you integrate the term x^2?


How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?


The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning