How do you integrate by parts?

This is one of the trickier methods of integration, and it requires some practise. The basic idea is to split a function which would be difficult to integrate into two parts. Differentiating one part and integrating the other will then lead to a function which is much easier to integrate.

The formula is that the integral of u dv = uv - the integral of v du. It is best demonstrated with an example:

Let's integrate f(x) = xcos(x)

We can see that x will disppear if we differentiate it, so let's set x = u and cos(x) = dv.

Differentiating u and integrating dv then gives du = 1 and v = sin(x)

Now we substitute these into the formula: xsin(x) - integral of sin(x)

Sin(x) is easy to integrate, it is just -cos(x). Now we have our answer! The integral of xcos(x) = xsin(x) + cos(x) + c, where c is our unknown (and always necessary!) constant of integration.

HM
Answered by Harry M. Maths tutor

4875 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation sec^2(A) = 3 - tan(A), for 0<= A <= 360 (degrees)


How would I use implicit differentiation to differentiate functions such as: y=tan^-1(ax^2+b) in the form of dy/dx=.....?


Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2


The polynomial p(x) is given by p(x)=x^3 - 5x^2 - 8x + 48. Given (x+3) is a factor of p(x), express p(x) as a product of 3 linear factors.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences