A 1.6m long string fixed at both ends vibrates at its fundamental frequency... (i)what is this frequency?

For the first part, we consult the formula c=fλ. This tells us that wavelength is inversely proportional to frequency.. ie as one increases the other decreases. This means the lowest(fundamental) frequency goes with the longest wavelength. If you consult a diagram of a vibrating string, you'll see that the greatest wavelength is equal to twice the length of the string.(This is because there must be a node at each end, and is best shown with diagrams).So the wavelength we are looking for is 1.6x2= 3.2m. Since this is a sound wave c=340m/s. All our numbers are in the correct units, so we may proceed, using f=cλ. The answer is f=106.25Hz

MK
Answered by Monique K. Physics tutor

5317 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the difference between a scalar and a vector?


What is the escape velocity of an object leaving a planet mass M, radius R?


Ignoring air resistance, use an energy argument to find the speed of a ball when it hits the ground if it is dropped from 50m, where m is the mass of the ball.


A ball is dropped from rest from a window 3m above ground height. How long will it take the ball to hit the ground? (You may assume air resistance on the ball is negligible.)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning