A 1.6m long string fixed at both ends vibrates at its fundamental frequency... (i)what is this frequency?

For the first part, we consult the formula c=fλ. This tells us that wavelength is inversely proportional to frequency.. ie as one increases the other decreases. This means the lowest(fundamental) frequency goes with the longest wavelength. If you consult a diagram of a vibrating string, you'll see that the greatest wavelength is equal to twice the length of the string.(This is because there must be a node at each end, and is best shown with diagrams).So the wavelength we are looking for is 1.6x2= 3.2m. Since this is a sound wave c=340m/s. All our numbers are in the correct units, so we may proceed, using f=cλ. The answer is f=106.25Hz

MK
Answered by Monique K. Physics tutor

5296 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain how bright fringes arise in Young's double slit experiment


A block of mass (m) is placed on a rough slope inclined at an angle (a) to the horizontal, find an expression in terms of (a) for the smallest coefficient of friction (x), such that the block does not fall down the slope.


From the 2016 OCR B paper A ball is thrown at an angle of 30 Degrees to the horizontal. The initial kinetic energy of the ball is K. Air resistance is negligible. What is the kinetic energy of the ball at the maximum height.


Find current and voltage across resistors R1 and R2, when they connected in parallel and in series. A 12V battery is connected, R1=4Ω and R2=3Ω.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning