A 1.6m long string fixed at both ends vibrates at its fundamental frequency... (i)what is this frequency?

For the first part, we consult the formula c=fλ. This tells us that wavelength is inversely proportional to frequency.. ie as one increases the other decreases. This means the lowest(fundamental) frequency goes with the longest wavelength. If you consult a diagram of a vibrating string, you'll see that the greatest wavelength is equal to twice the length of the string.(This is because there must be a node at each end, and is best shown with diagrams).So the wavelength we are looking for is 1.6x2= 3.2m. Since this is a sound wave c=340m/s. All our numbers are in the correct units, so we may proceed, using f=cλ. The answer is f=106.25Hz

MK
Answered by Monique K. Physics tutor

5343 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An electron falling from one energy level to another emits a photon of wavelength 550nm. What is the difference between the two energy levels?


Why does light change direction when it hits a surface with a different refractive index?


Two trains are heading in opposite directions on the same track. Train X has a mass of 16000kg and a speed of 2.8m/s. Train Y has a mass of 12000kg and a speed of 3.1m/s. At what speed do the joined trains move off together immediately after the collison?


How would you explain general relativity?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning