Prove by induction that the nth triangle number is given by n(n+1)/2

base case: (1 x 2)/2 = 1 as required inductive step: assuming statement holds for n=k, the (k+1)th triangle number is given by k(k+1)/2 + (k+1) by definition=(k^2+3k+2)/2=(k+1)(k+2)/2=(k+1)((k+1)+1)/2result follows by induction

CB
Answered by Christopher B. Maths tutor

3735 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Consider the function f(x) = 2/3 x^3 + bx^2 + 2x + 3, where b is some undetermined coefficient:


What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


a) Express 4(cosec^2(2x)) - (cosec^2(x)) in terms of sin(x) and cos (x) and hence b) show that 4(cosec^2(2x)) - (cosec^2(x)) = sec^2(x)


Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning