Prove by induction that the nth triangle number is given by n(n+1)/2

base case: (1 x 2)/2 = 1 as required inductive step: assuming statement holds for n=k, the (k+1)th triangle number is given by k(k+1)/2 + (k+1) by definition=(k^2+3k+2)/2=(k+1)(k+2)/2=(k+1)((k+1)+1)/2result follows by induction

CB
Answered by Christopher B. Maths tutor

3485 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do changes to the coefficient of x affect the graph y = f(x) as opposed to changes to the coefficient of f(x)?


Expand and simplify (n + 2)^3 − n^3.


Find dy/dx where y=e^(4xtanx)


Find the stationary point of the graph of y = 2x + 5 + 27x^(-2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning