Prove by induction that the nth triangle number is given by n(n+1)/2

base case: (1 x 2)/2 = 1 as required inductive step: assuming statement holds for n=k, the (k+1)th triangle number is given by k(k+1)/2 + (k+1) by definition=(k^2+3k+2)/2=(k+1)(k+2)/2=(k+1)((k+1)+1)/2result follows by induction

CB
Answered by Christopher B. Maths tutor

3365 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2


Express (5x + 4)/(x +2)(x - 1) in partial fractions.


Differentiate with respect to x: x*cos(x)


Find the differential of the equation: x^2(2x+5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences