Prove by induction that the nth triangle number is given by n(n+1)/2

base case: (1 x 2)/2 = 1 as required inductive step: assuming statement holds for n=k, the (k+1)th triangle number is given by k(k+1)/2 + (k+1) by definition=(k^2+3k+2)/2=(k+1)(k+2)/2=(k+1)((k+1)+1)/2result follows by induction

CB
Answered by Christopher B. Maths tutor

3656 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express square root of 48 in the form n x square root of 3 , where n is an integer


Find exact solution to 2ln(2x+1) - 10 =0


Differentiate x^2 + xy + y^2 =1 implicitly.


Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning