Differentiate y=x/sin(x)

This equation has one function of x divided by another function of x, we therefore have to use the quotient rule and is written in the form f(x)/g(x). 

The quotient rule is therefore

f'(x)g(x)-g'(x)f(x)/g2(x)

The first step would be to differentiate f(x) and g(x). 

f'(x)=1 g'(x)=cos(x)

The numerator of this fraction would therefore be 

1*sin(x)-xcos(x) =sin(x)-xcos(x)

To calculate the denominator you simply square g(x)

g2(x)= sin2(x)

So the answer would be sin(x)-xcos(x)/sin2(x)

RF
Answered by Rowan F. Maths tutor

24720 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)


How do I get the eigenvalues, x, of a matrix, M, with eigenvectors, v?


Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)


A cubic curve has equation y x3 3x2 1. (i) Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning