Differentiate y=x/sin(x)

This equation has one function of x divided by another function of x, we therefore have to use the quotient rule and is written in the form f(x)/g(x). 

The quotient rule is therefore

f'(x)g(x)-g'(x)f(x)/g2(x)

The first step would be to differentiate f(x) and g(x). 

f'(x)=1 g'(x)=cos(x)

The numerator of this fraction would therefore be 

1*sin(x)-xcos(x) =sin(x)-xcos(x)

To calculate the denominator you simply square g(x)

g2(x)= sin2(x)

So the answer would be sin(x)-xcos(x)/sin2(x)

RF
Answered by Rowan F. Maths tutor

24907 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate xe^2


How would you derive y = function of x; for example: y = 3x^3 + x^2 + x


Evaluate the following integral: (x^4 - x^2 +2)/(x^2(x-1)) dx


Find the tangent to the curve y = x^3 - 2x at the point (2, 4). Give your answer in the form ax + by + c = 0, where a, b and c are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning