Differentiate y=x/sin(x)

This equation has one function of x divided by another function of x, we therefore have to use the quotient rule and is written in the form f(x)/g(x). 

The quotient rule is therefore

f'(x)g(x)-g'(x)f(x)/g2(x)

The first step would be to differentiate f(x) and g(x). 

f'(x)=1 g'(x)=cos(x)

The numerator of this fraction would therefore be 

1*sin(x)-xcos(x) =sin(x)-xcos(x)

To calculate the denominator you simply square g(x)

g2(x)= sin2(x)

So the answer would be sin(x)-xcos(x)/sin2(x)

RF
Answered by Rowan F. Maths tutor

23993 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to integrate lnx by parts?


A curve C has equation: y = x^2 − 2x − 24x^1/2, x > 0; Find (i) dy/dx (ii) d^2y/dx^2


Find the radius and centre of the circle given x^2+4x+y^2+2y=20


A curve has equation y = 2x^5 + 5x^4 1 . (a) Find: (i) dy/ dx [2 marks] (ii) d^2y/ dx^2 (b) The point on the curve where x ¼ 1 is P. (i) Determine whether y is increasing or decreasing at P, giving a reason for your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences