Use the Intermidiate Value Theorem to prove that there is a positive number c such that c^2 = 2.

This exercise is asking to prove the existance of the square root of 2. So let's consider the function f(x) = x^2. Since f(x) is a polynomial, then it is continuous on the interval (- infinity, + infinity). Using the Intermidiate Value Theorem, it would be enough to show that at some point a f(x) is less than 2 and at some point b f(x) is greater than 2. For example, let a = 0 and b = 3. Therefore, 

f(0) = 0, which is less than 2, and f(3) = 9, which is greater than 2. Applying IVT to f(x) = x^2 on the interval [0,3] and taking N=2, we can therefore guarantee the existance of a number c such that 0<c<2 and c^2 = 2. 

DK
Answered by Dilyana K. Maths tutor

9093 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

15/7 + 5/4


How do i solve the quadratic x^2 + 5x + 6 = 0 ?


Solve 7(k-3)=3k-5


A plane travels at 213 miles per hour. Work out an estimate for how long, in seconds, the plane takes to travel one mile.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning