Use the Intermidiate Value Theorem to prove that there is a positive number c such that c^2 = 2.

This exercise is asking to prove the existance of the square root of 2. So let's consider the function f(x) = x^2. Since f(x) is a polynomial, then it is continuous on the interval (- infinity, + infinity). Using the Intermidiate Value Theorem, it would be enough to show that at some point a f(x) is less than 2 and at some point b f(x) is greater than 2. For example, let a = 0 and b = 3. Therefore, 

f(0) = 0, which is less than 2, and f(3) = 9, which is greater than 2. Applying IVT to f(x) = x^2 on the interval [0,3] and taking N=2, we can therefore guarantee the existance of a number c such that 0<c<2 and c^2 = 2. 

DK
Answered by Dilyana K. Maths tutor

8310 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

(This was taken from a GCSE past paper)A bag of 24 spoons costs £19.95. A box of 18 forks costs £15.55. Bags and boxes cannot be split. Gregor decides to buy the same number of spoons as forks. He places an order to buy the smallest number of each


Find the coordinates where the curve f(X)= X^2+X-6 touches the x axis using factorisation.


Find the length of a side of the triangle (Pythagoras' Theorem) Two sides are of length 3cm and 4cm, find the length of the Hypotenuse.


Prove that (4x–5)^2 – 5x(3x – 8) is positive for all values of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences