Use the Intermidiate Value Theorem to prove that there is a positive number c such that c^2 = 2.

This exercise is asking to prove the existance of the square root of 2. So let's consider the function f(x) = x^2. Since f(x) is a polynomial, then it is continuous on the interval (- infinity, + infinity). Using the Intermidiate Value Theorem, it would be enough to show that at some point a f(x) is less than 2 and at some point b f(x) is greater than 2. For example, let a = 0 and b = 3. Therefore, 

f(0) = 0, which is less than 2, and f(3) = 9, which is greater than 2. Applying IVT to f(x) = x^2 on the interval [0,3] and taking N=2, we can therefore guarantee the existance of a number c such that 0<c<2 and c^2 = 2. 

DK
Answered by Dilyana K. Maths tutor

9107 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the inequality x^2 < -8x + 9


A shop sells only Apples, Bananas and Mangos. The ratio of Apples to Bananas is 5:11. The next shopper will choose one piece of fruit at random. The probability that they buy a Mango is 0.2. What is the probability that they buy an Apple?


Finding the intersection of a two lines (curved and linear example)


A semicircle has a diameter of 8cm, what it the area?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning