Given that (2x + 11 )/(2x + 1)(x + 3) ≡ A /(2x + 1) + B /(x + 3) , find the values of the constants A and B. Hence show that the integral from 0 to 2 (2x + 11)/ (2x + 1)(x + 3) dx = ln 15.

First starting from the right hand side.

 A /(2x + 1) + B /(x + 3) = A(x+3)+B(2x+1)/(x+3)(2x+1)

Therefore the numerator = (A+2B)x+(3A+B)

Equating this numorator with the Left hand side we are presented with the two simultaneous equations A+2B=2, 3A+B=11 yielding solutions of B=-1, A=4 by elimination of A

 Hence the integral from 0 to 2  (2x + 11)/ (2x + 1)(x + 3) dx =  integral from 0 to 2 of 4/(2x+1) - 1/(x+3) dx

=[2ln(2x+1) - ln(x+3)] from 0 to 2

= [(2ln5-ln5)-(2ln1-ln3)]

=ln(5)-ln(1/3)

=ln(15)

GD
Answered by George D. Maths tutor

6391 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two points have coordinates (1,-6) and (-2,3). Find the equation of the line which joins them, and their midpoint.


How do I do binomial expansions for positive integer n?


A block mass m lies on an incline rough plane, with coefficient of friction µ. The angle of the block is increased slowly, calculate the maximum angle of the slope that can be achieved without the block slipping.


How do I tell if a curve has a maximum or a minimum?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences