Given that (2x + 11 )/(2x + 1)(x + 3) ≡ A /(2x + 1) + B /(x + 3) , find the values of the constants A and B. Hence show that the integral from 0 to 2 (2x + 11)/ (2x + 1)(x + 3) dx = ln 15.

First starting from the right hand side.

 A /(2x + 1) + B /(x + 3) = A(x+3)+B(2x+1)/(x+3)(2x+1)

Therefore the numerator = (A+2B)x+(3A+B)

Equating this numorator with the Left hand side we are presented with the two simultaneous equations A+2B=2, 3A+B=11 yielding solutions of B=-1, A=4 by elimination of A

 Hence the integral from 0 to 2  (2x + 11)/ (2x + 1)(x + 3) dx =  integral from 0 to 2 of 4/(2x+1) - 1/(x+3) dx

=[2ln(2x+1) - ln(x+3)] from 0 to 2

= [(2ln5-ln5)-(2ln1-ln3)]

=ln(5)-ln(1/3)

=ln(15)

GD
Answered by George D. Maths tutor

6382 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.


How does integration work?


Point P on the curve, x = 2tan( y+ π/12), has a y-coordinate of π/4. Find an equation for the normal to the curve at P.


How does integration by parts work ad when to use it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences