The second and fifth terms of a geometric series are 750 and -6 respectively. Find: (1) the common ratio; (2) the first term of the series; (3) the sum to infinity of the series

xn = ar(n-1)(1) x2 = 750 = ar1(2) x5 = -6 = ar4divide second equation by first-6/750 = r3r3 = -0.008r= -0.2Insert into first equation.750 = a * -0.2a = -3750Sum to infinite series = a(1/(1-r))(insert known variables)Sum to infinite series = -3750 * 1/1.2= -3125

HP
Answered by Henry P. Maths tutor

6245 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the tangent to the curve y=x^3+3x^2+2 when x=2


A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.


Find the exact value of the gradient of the curve y = e^(2- x)ln(3x- 2). at the point on the curve where x = 2.


Find the coordinates of the minimum point of the curve y = 3x^(2) + 9x + 10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning