The second and fifth terms of a geometric series are 750 and -6 respectively. Find: (1) the common ratio; (2) the first term of the series; (3) the sum to infinity of the series

xn = ar(n-1)(1) x2 = 750 = ar1(2) x5 = -6 = ar4divide second equation by first-6/750 = r3r3 = -0.008r= -0.2Insert into first equation.750 = a * -0.2a = -3750Sum to infinite series = a(1/(1-r))(insert known variables)Sum to infinite series = -3750 * 1/1.2= -3125

HP
Answered by Henry P. Maths tutor

5714 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the expression x^6+5x^4+3 with respect to x


Solve 2sec^2(x) = 3 + tan(x) for 0 < x <pi/2


Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences