How do I expand (x - 4)(2x + 3y)^2 ?

To start off, to make things clearer we can write the expression as:(x - 4)(2x + 3y)(2x + 3y)Now focus on just two of the brackets, say (2x + 3y)(2x + 3y). To expand this, we need to do the following four multiplications: the first term in the first bracket (2x) with the first term in the second bracket (2x) to get 4x^2, the first term in the first bracket (2x) with the second term in the second bracket (3y) to get 6xy, the second term in the first bracket (3y) with the first term in the second bracket (2x) to get 6xy and finally the second term in the first bracket (3y) with the second term in the second bracket (3y) to get 9y^2. The expansion of the expression is then the sum of all these terms: 4x^2 + 6xy + 6xy + 9y^2. We can simplify this immediately to get: (2x + 3y)(2x + 3y) = 4x^2 + 12xy + 9y^2.This means we now want to expand: (x - 4)(4x^2 + 12xy + 9y^2). We use the same technique as before, that is, to multiply each term in the first bracket with each term in the second bracket, then take the sum of these. Thus, we find the answer: 4x^3 + 12x^2y + 9xy^2 - 16x^2 - 48xy - 36y^2.

HM
Answered by Hector M. Maths tutor

5726 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 1) 4x - 2y = 28, 2) 4y - 3x = -36.


Solve the simultaneous equations. 5x+y=21, x-3y=9.


What is the gradient of the line passing through the point (1,2) and (5,5)? What is the equation of this line? What is the equation of the line perpendicular to this line that passes through the origin (0,0)?


There are 30 yellow sweets and 10 black sweets in a bag. Two sweets are taken out at random without replacement. Work out the probability that the two sweets are the same colour.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning